

Considerations on Stereo and Surround recording, reproduction and perception

Helmut Wittek SCHOEPS GmbH, Karlsruhe, Germany

SCHOEPS

Contents

Contents:

- An overview of psychoacoustics and applied microphone techniques
- Both theory and practical demonstration, by calculating and listening

Topics

- Source localisation / stereophonic localisation
- Theories of microphone design
- Microphone setups and their properties
- The microphone and its properties

Source localisation

- Where is the source?
- At which distance?
- In which room, what is the room like?
- What does the source radiate?

Stereophonic localisation

- \geq 2 radiating sources
- Only one perceived "phantom" source

Summing localisation

Interaural Cross Correlation (= Interaural Time Delay ITD vs. frequency)

Real source Perceived Direction + 15°

Phantom source

Perceived Direction + 15° Interchannel Level Difference $\Delta L = 7 \text{ dB}$

Summing localisation

Interaural Cross Correlation (= Interaural Time Delay ITD vs. frequency)

Virtual source Perceived Direction + 15°

Phantom source

Perceived Direction + 15° Interchannel Time Delay $\Delta t = 0.4$ ms

Other hypothesis

- Problems of the summing localisation theory:
 - Works only below ca.1500 Hz
 - Works only for level panning
 - Works only in the sweet spot
 - It cannot explain the perceived sound colour
- Other hypothesis for stereophonic localisation/perception:

Stereo signals can be perceived *separately*

- "Binaural decolouration" (Salomons, Brüggen)
- "Association model" (Theile, 1980)
 - After the separate localisation, the fusion of the coherent signals takes place → no physical superposition, no comb filtering

Consequences for the sound engineer

- 1. Do we aim at a "physical" synthesis in stereo? (as do *Ambisonics*, *Blumlein*)
- 2. Can only *coincident microphones* create spatial sound?
- 3. Are time differences allowed?
 (see e.g. Lipshitz: "Are the purists wrong?", JAES)
- 4. Can we use microphones at ear spacing? (like ORTF, SCHOEPS sphere microphone)
- 5. Is it wise to al ✓ crosstalk in surround microphones? (see Lee/Rumsey, AES)

Source localisation

- Where is the source?
- At which distance?
- In which room, what is the room like?

Source localisation

Discrete Signals: <i>Correlated at both ears</i> <i>From discrete directions</i>	Diffuse Signals: Decorrelated at both ears From all directions	
Sp Direction Depth, Spaciousne	Reverberance	
0 ms 30 ms	> t	
	© Theile	

- 1. Envelopment is hardly possible in 2-ch stereo
- 2. No real depth is possible in 2-ch stereo
- 3. Reflection density too high! \rightarrow has to be reduced
- Reverb should be reproduced as diffuse as possible → decorrelated!

Diffuse field correlation

Reproduction of the reverb tail:

- Should be diffuse, should be perceived from everywhere
- The more correlation, the narrower the image of the reverb tail
- → The diffuse sound should be reproduced decorrelated. The decisive measure is called:

Diffuse field correlation (DFC)

Diffuse field correlation

- Perceptual consequence of correlated diffuse field reproduction → Demo
- DFC of coincident microphone setups:

Setup	XY, 90°, Cardioids	XY, 120°, Super- cardioids	Blumlein, 90°, Figure-8	XY, 180°, Cardioids
DFC	0.75	0.23	0	0.5

a/b and ORTF correlation

• DFC of spaced microphones \rightarrow Calculation

• Shuffling techniques could correct for that...

Directional Imaging

- Level and time differences govern the perceived phantom source direction $\phi_L = f(\Delta L)$;
- $\phi_{I} = f(\Delta L);$
- $\phi_t = f(\Delta t);$
- $\phi = \phi_1 + \phi_t$;
- The necessary interchannel differences are rather similar to those known from natural hearing

Comparison of stereo setups

- Recording angle
- Recording angle 75%
- Image Assistant on www.hauptmikrofon.de
- Comparison of different stereo setups sharing the same recording angle → Demo Showroom

2-ch Microphone Design

- *Directional Image*: can be calculated, differences between stereo techniques regarding the image
- Diffuse Field Correlation DFC: should be minimal: not possible with small a/b or normal cardioid XY
- Further points of interest:
 - Reality is not always ideal!
 - Type and properties of single capsules (pressure/pressure gradient transducer)
 - Direct/Reverb ratio \rightarrow controls reflection level
 - Loudness balance
 - Size of the setup
 - Sensitivity to wind noise

5.1 Spatial reproduction

Surround Microphone Design

Stability in 5.1

• Localisation curve on off-centre position

OCT Surround Setup

IRT cross

• IRT cross for Surround atmos: 20-25cm

Surround – non-coincident

OCT Surround

Double MS: The M/S principle

The Double M/S idea

- Front M/S pair
- Rear M/S pair

Double M/S enables 2 different decoding methods:

- a) each pair is decoded separately
- b) decoding utilizes the third microphone as well

Crosstalk

• Crosstalk in Double M/S

ightarrow Avoid crosstalk by optimal decoding

Tools for Decoding

Decoding variants:

- 2 M/S Matrices
- Hardware (MDMS U)

Software (VST PlugIn)

CCM 4VLg

(cardioid)

A DMS LU

cable adapter of

• Try by yourself, it's free! www.schoeps.de/dmsplugin.htm

Film recording

• Double M/S with shotgun

Surround - coincident

CMIT-Double M/S

Double M/S

Higher Order Techniques

• Which higher order technique can be used in practice?

for reproduction:

- Wavefield synthesis (WFS) and Higher Order Ambisonics (HOA) can recreate sound fields
- Stereo can (only) generate the same perception in the sweet spot

for recording:

• Higher order microphone techniques are either noisy and/or can not yet deliver a fully satisfying and stable timbral quality, but proposals will come for special applications

WFS or Stereo?

Wittek, Rumsey, Theile, Journal of the AES, Vol.55/9, 2007:

Colouration of WFS and Stereo:

Is stereo just a poor 2-ch wavefield synthesis?

WFS or Stereo?

Wittek, Rumsey, Theile, Journal of the AES, Vol.55/9, 2007:

Colouration of WFS and Stereo

What does the microphone need?

- The microphone is the basis for all.
- Well-known parameters govern the quality:
 - Good frequency response
 - Smooth polar pattern
 - Low noise floor
 - Good reliability
 - And the sound...

Thank you.

wittek@schoeps.de

